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Passive Microwave Algorithms for Sea Ice
Concentration: A Comparison of Two Techniques
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Abstract

The most comprehensive large-scale characterization of the global sea ice cover so far
has been provided by satellite passive microwave data. Accurate retrieval of ice
concentrations from these data is important because of the sensitivity of surface flux (e.g.,
heat, salt, and water) calculations to small changes in the amount of open water (leads
anal polynyas) within the polar ice packs. Two algorithms that have been used for
deriving ice concentrations from multichannel data are compared. One is the NASA
Team algorithm and the other is the Bootstrap algorithm, both of which were developed
at NASA's Goddard Space Flight Center. The two algorithms use different channel
combinations, reference brightness temperatures, weather filters, and techniques.
Analyses are made to evaluate the sensitivity of algorithm results to variations of
emissivity and temperature with space and time. To assess the difference in the
performance of the two algorithms, analyses were performed with data from both
hemispheres and for all seasons. The results show only small differences in the central
Arctic in winter but larger disagreements in the seasonal regions and in summer. In some
areas in the Antarctic, the Bootstrap technique shows ice concentrations higher than those
of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice
concentrations lower by as much as 30%. The differences in the results are caused by
temperature effects, emissivity effects, and tie point differences. The Team and the
Bootstrap results were compared with available Landsat, advanced very high-resolution
radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and
SAR data sets all yield higher concentrations than the passive microwave algorithms.
Inconsistencies among results suggest the need for further validation studies.
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Figure 22. Comparison of monthly extent and actual ice ar-
eas derived from ice concentration maps generated by the
Team and Bootstrap algorithms for the (a) Antarctic and (b)
Arctic regions during 1992,

trations during the summer than those previously
generated from the Bootstrap algorithm, are the ones
currently in use.

DISCUSSION AND CONCLUSIONS

In this paper, a comparison of ice concentrations derived
from the Team and Bootstrap algorithms has been made.
Monthly maps over an annual cycle in 1992 were com-
pared in both the Northern and the Southern Hemi-
spheres. The results indicate some large differences in
ice concentrations, in the inner pack, in the coastal re-
gions, and in some marginal ice areas. In some areas of
the Antarctic, the Bootstrap algorithm shows 10-35%
higher values than does the Team algorithm. In others,
the reverse is true, especially in the coastal regions along
the continent. Similar but smaller discrepancies are ob-
served in the seasonal sea ice zones of the Arctic. Results
from other years also have been examined (e.g., 1988),
and the patterns of differences are similar.

Errors associated with each algorithm have been as-
sessed. The sensitivity in the determination of ice con-
centration resulting from fluctuations in temperature and
emissivity has been discussed. The key issue is how well
each algorithm handles these fluctuations. Temperature

fluctuations are handled by the Team algorithm better
than the Bootstrap algorithm. Interestingly, some of the
patterns in the monthly maps of the differences (Fig. 7)
are similar to the patterns in the temperature maps in
Gloersen et al. (1992). Low snow-ice interface tempera-
tures would cause an underestimate in ice concentration
by the Bootstrap algorithm, whereas high ice temperatures
would cause an overestimate. However, in areas of the
Antarctic where large discrepancies occur between the
two algorithms, in situ measurements of snow/ice interface
temperatures indicate an average of —6° C with a stan-
dard deviation of only about 2° C (Comiso et al., 1989).

Two case studies presented suggest that temperature
is not the only cause of the discrepancies in the results.
In these studies, the Bootstrap algorithm results are on
average about 10% higher than the Team algorithm re-
sults, and analysis of Landsat, AVHRR, SAR, and aircraft
photography indicate even higher ice concentrations than
the Bootstrap values. If the Landsat and SAR values are
correct, possible explanations for the differences are sub-
surface effects, such as ice layers in the snow or near the
ice surface or the presence of new and young ice types.
Each of these effects would affect the horizontally polar-
ized radiances more than the vertically polarized radi-
ances. The problem of new ice has been addressed else-
where for Arctic seasonal sea ice zones (Cavalieri, 1994;
Wensnahan et al., 1993).

For global climate studies, it is important to examine
differences in sea ice extents, actual area, and their
trends as produced by the two algorithms. Estimates of
ice extent from either algorithm can be done with rela-
tively high precision because of the large contrast in
emissivity between ice and ocean at 19 or 37 GHz. How-
ever, the ice edge is usually the scene of stormy weather
conditions, and the locations of the ice edge as inferred
from the Team and Bootstrap algorithms are not always
consistent, because of different weather filter—ocean
masking techniques. The ice extents and ice areas de-
rived from both algorithms in both hemispheres are
shown in Figure 22. In the Antarctic, the difference in
the 15% ice extent is as large as 0.2X10° km”* (about 1%),
whereas the maximum difference in actual ice area is
about 1.2X10° km? (about 7.5%). In the Arctic, the cor-
responding values are 0.2X10° and 0.8X10° km?, respec-
tively. The differences in ice extents may originate in
part from the differences in the weather filter—ocean
masks. The differences in ice concentration within the
pack make a substantial difference in the estimates of ice
area. A better understanding of the differences between
the two algorithms would eventually lead to more accu-
rate ice concentrations, which would improve estimates
of heat, radiation, and salinity fluxes in the polar regions.

We conclude that there is a need for further valida-
tion studies, especially in areas where there are large dis-
crepancies in ice concentrations derived from the two al-
gorithms. The focus should be on studying spatial



variations in emissivity and temperature that may cause
the large differences between the Bootstrap and the
Team values in the Antarctic regions and in the periph-
eral seas in the Arctic. Even in the central Arctic region
where the agreement is best, differences of a few per-
cent should be resolved. Because of the large discrep-
ancy between the two algorithms, a re-examination of the
selected algorithm tie points is warranted. Our prelimi-
nary analysis shows that adjustments of tie points can
make the results from the two algorithms more similar
but there are substantial differences in the frequency
distributions of ice concentration. For now, users should
be aware of the strengths and weaknesses of each algo-
rithm and be able to choose the one best suited to the
research being undertaken.
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