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ABSTRACT

A multivariate ensemble Kalman filter (MVEnKF) implemented on a massively parallel computer architecture
has been developed for the Poseidon ocean circulation model and tested with a Pacific basin model configuration.
There are about 2 million prognostic state-vector variables. Parallelism for the data assimilation step is achieved
by regionalization of the background-error covariances that are calculated from the phase—space distribution of
the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby
PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the
background-error covariances are given compact support by means of a Hadamard (element by element) product
with a three-dimensional canonical correlation function.

The methodology and the MVEnKF implementation are discussed. To verify the proper functioning of the
algorithms, results from an initial experiment with in situ temperature data are presented. Furthermore, it is
shown that the regionalization of the background covariances has a negligible impact on the quality of the
analyses.

Even though the parallel algorithm is very efficient for large numbers of observations, individual PE memory,
rather than speed, dictates how large an ensemble can be used in practice on a platform with distributed memory.

1. Introduction
a. Background and motivation

Many of the early advances in ocean data assimilation
have emerged from practical applications in the tropical
Pacific. These applications have been driven by the need
to initialize the ocean state for coupled atmosphere—
ocean forecasts of the El Niflo—Southern Oscillation
(ENSO) phenomenon. In addition, hindcast estimates of
the ocean state have been useful in diagnosing the evo-
lution of El Nino. Over much of the world’s oceans,
large-scale assimilation is facilitated by the availability
of satellite altimetry because of the sparsity of in situ
data. However, in the tropical Pacific, the ocean ob-
serving system was vastly improved by the deployment
of the Tropical Atmosphere Ocean (TAO) array of
moored buoys (e.g., McPhaden et al. 1998) to support
seasonal-to-interannual (SI) climate studies and predic-
tion. One of the major successes of the Tropical Ocean
Global Atmosphere program was the emergence of cou-
pled physical models (as opposed to statistical models)
with some prediction skill (e.g., Chen et al. 1995; Ji et
al. 1996).

Recently, the NASA Seasonal-to-Interannual Predic-
tion Project (NSIPP) has been established to further the
utilization of satellite observations for prediction of
short-term climate phenomena. NSIPP undertakes rou-
tine experimental forecasts in a research framework with
global coupled ocean—atmosphere—land surface models.
The initial implementation has used an ocean analysis
system employing a simple assimilation methodology —

a univariate optimal interpolation (UOI)—with the Po-
seidon isopycnal ocean general circulation model
(OGCM; Schopf and Loughe 1995; Konchady et al.
1998; Yang et al. 1999). Like several other ocean data
assimilation systems currently in use at other institutions
(e.g., Ji and Leetma 1997), it is based on the assumption
that the forecast-error covariances are approximately
Gaussian and that the covariances between the temper-
ature-field errors and the salinity-field and current-field
errors are negligible.

Largely due to the high-resolution coverage and ac-
curacy of the TAO measurements, the UOI is effective
in improving surface and subsurface temperature-field
estimates in the equatorial region in comparison with
the estimates obtained without temperature assimilation.
As a result, its introduction into the NSIPP coupled
forecasting system has resulted in significant improve-
ments in the coupled model’s hindcast skill of Nifio-3
temperature anomalies.

The UOI has the advantage of being inexpensive in
terms of computing resources. Nevertheless, it suffers
from three major shortcomings: first, it can only be used
to assimilate measurements of a model prognostic var-
iable; second, it does not use any statistical information
about the expected inhomogeneous distribution of mod-
el errors; third, it is based on a steady-state error—co-
variance model, which gives the same weight to a unit
innovation regardless of how accurate the ocean-state
estimate has become as a result of previous analyses.
Directly linked to this shortcoming is the failure to pro-
vide time-dependent estimates of the model errors.
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In response to the first two shortcomings, a parallel
multivariate OI (MvOI) system has been implemented.
The MvOI uses steady-state estimates of the model-error
statistics computed from ensemble runs of the OGCM
in the presence of stochastic atmospheric forcing from
an ensemble integration of the atmospheric general cir-
culation model (AGCM) (Borovikov and Rienecker
2002). Yet, the MvOI cannot adjust to dynamically
evolving error statistics. A parallel multivariate ensem-
ble Kalman filter (MvEnKF) has been developed to ad-
dress this shortcoming. This paper discusses its design,
implementation, and initial testing.

b. Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960) and its
generalization to nonlinear systems, the extended Kal-
man filter, are statistically optimal sequential estimation
procedures that minimize error variance (e.g., Daley
1991; Ghil and Malanotte-Rizzoli 1991; Bennett 1992),
they cannot be used in the context of a high-resolution
ocean or atmospheric model because of the prohibitive
cost of time stepping the model-error covariance matrix
when the model has more than a few thousand state
variables. Therefore, reduced-rank (e.g., Cane et al.
1996; Verlaan and Heemink 1997) and asymptotic (e.g.,
Fukumori and Malanotte-Rizzoli 1995) Kalman filters
have been proposed. Evensen (1994) introduced the en-
semble Kalman filter (EnKF) as an alternative to the
traditional Kalman filter. In the EnKFE, an ensemble of
model trajectories is integrated and the statistics of the
ensemble are used to estimate the model errors. Closely
related to the EnKF are the singular evolutive extended
Kalman filter (Pham et al. 1998) and the error-subspace
statistical estimation algorithms described in Lermu-
siaux and Robinson (1999).

Evensen (1994) compared the EnKF to the extended
Kalman filter in twin assimilation experiments involving
a two-layer quasigeostrophic (QG) ocean model on a
square 17 X 17 grid. Evensen and van Leeuwen (1996)
used the EnKF to process U.S. Navy Geodesy Satellite
(Geosat) altimeter data into a two-layer, regional QG
model of the Agulhas current on a 51 X 65 grid. Hou-
tekamer and Mitchell (1998) and Mitchell and Houtek-
amer (2000) used the EnKF in identical twin experi-
ments involving a three-level, spectral QG model at
triangular truncation T21 and parameterized model er-
rors.

Keppenne (2000, hereafter KOO) conducted twin ex-
periments with a parallel MVEnKF algorithm imple-
mented for a two-layer, spectral, T100 primitive equa-
tion model with parameterized model errors. With about
2 X 10° model variables, the state-vector size was small
enough in this application to justify a parallelization
scheme in which each ensemble member resides in the
memory of a separate CRAY T3E processor [hereafter,
processing element (PE)]. To parallelize the analysis,
KO00’s algorithm transposes the ensemble across PEs at
analysis time, so that each PE ends up processing data
from a subregion of the model domain. The influence
of each observation is weighted according to the dis-
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tance between that observation and the center of each
PE region.

To filter out noise associated with small ensemble
sizes, Houtekamer and Mitchell (2001) developed a par-
allel EnKF analysis algorithm that applies a Hadamard
(element by element) product (e.g., Horn and Johnson
1991) of a correlation function having local compact
support with the background-error covariances. They
tested this analysis scheme on a 128 X 64 Gaussian
grid corresponding to a 50-level QG model using ran-
domly generated ensembles of first-guess fields. The
benefits of constraining the covariances between ensem-
ble members using a Hadamard product with a locally
supported correlation function has also been investi-
gated by Hamill and Snyder (2000) in the context of an
intermediate QG atmospheric model.

5. Summary

This article describes the MvEnKF design and its
parallel implementation for the Poseidon OGCM. A do-
main decomposition whereby the memory of each PE
contains the portion of every ensemble member’s state
vector that corresponds to the PE’s position on a 2D
horizontal lattice is used. The assimilation is parallelized
through a localization of the forecast-error covariance
matrix. When data becomes available to assimilate, each
PE collects from neighboring PEs the innovations and
measurement-functional elements according to the lo-
calization strategy. The covariance functions are given
compact support by means of a Hadamard product of
the background-error covariance matrix with an ideal-
ized locally supported correlation function. In EnKF
implementations involving low-resolution models, one
has the freedom to work with ensemble sizes on the
order of hundreds or thousands. Rather, with the state-
vector size of approximately 2 million variables con-
sidered here, memory, communications between PEs,
and operation count limit the ensemble size. In most
instances, 40 ensemble members distributed over 256
CRAY T3E PEs are used.

Besides the details of the observing system imple-
mentation, the impact of the background-covariance lo-
calization on the analysis increments is discussed, as
well as performance issues. To confirm that the data
assimilation system is working properly, the discussion
also includes results from an initial test run in which
the MvEnKF is used to assimilate TAO temperature data
into Poseidon.

Some issues that must be addressed to improve the
MVEnKEF are the deficiency of the system-noise model,
which only accounts for forcing errors, the problem of
ensemble initialization, which can be addressed using a
perturbation-breeding approach, and the memory limi-
tations inherent with running the MvEnKF on a MPP
with distributed memory. On a machine with globally
addressable memory, the memory-imposed constraints
would be less severe. Fortunately, the modular, object-
oriented approach used to develop the MvEnKF allows
an easy port of the implementation from the CRAY T3E
to almost every distributed-memory or shared-memory
parallel computing architecture.
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