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[1] It is shown that the in-water, shape factor formulation of the radiative transfer
equation (RTE) (1) yields exact in-air expressions for the remote sensing reflectance Rrs

and the equivalent remotely sensed reflectance RSRa and (2) can be configured for
inherent optical property (IOP) retrievals using standard linear matrix inversion methods.
Inversion of the shape factor RTE is exact in the sense that no approximations are made to
the RTE. Thus errors in retrieved IOPs are produced only by uncertainties in (1) the
models for the shape factors and related quantities and (2) the IOP models required for
inversion. Hydrolight radiative transfer calculations are used to derive analytical models
for the necessary backscattering shape factor, radiance shape factor, fractional forward
scattering coefficient, ratio of air-to-water mean cosines, and diffuse attenuation
coefficient for in-water upwelling radiance. These models predict the various shape factors
with accuracies ranging typically from 2 to 20%. Using the modeled shape factors the
in-air remotely sensed reflectance RSRa can be predicted to within 20% of the correct
(Hydrolight-computed) values 96% of the time (or ±0.0005 sr�1 86% of the time) for the
synthetic data used to determine the shape factor models. Inversion of this shape
factor RTE using field data is a comprehensive study to be published in a later
paper. INDEX TERMS: 4552 Oceanography: Physical: Ocean optics; 4847 Oceanography: Biological and

Chemical: Optics; 4275 Oceanography: General: Remote sensing and electromagnetic processes (0689); 4842

Oceanography: Biological and Chemical: Modeling; KEYWORDS: remote sensing, optical oceanography,

inverse modeling, radiative transfer theory
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1. Introduction

[2] Semianalytic radiance models [Gordon et al., 1988;
Morel and Gentili, 1996] can be readily inverted by linear
matrix methods [Hoge et al., 1999a, 1999b, 2001] to provide
oceanic inherent optical properties (IOPs). Such inversions
are well conditioned [Hoge and Lyon, 1996] and promise a
powerful method of simultaneously retrieving constituent
absorption and backscattering coefficients in the upper
surface layer of the world’s oceans using satellite data [Hoge
et al., 2001; Hoge and Lyon, 2002]. However, semianalytic
radiance models (1) do not provide an exact framework
to account for all possible environmental and viewing
conditions [Weidemann et al., 1995] and (2) contain fixed
constants that both obscure insight into the physical radiative
transfer processes and limit their flexibility.

[3] The radiative transfer equation (RTE) can provide
exact inverse solutions, but the RTE is not easily inverted
for many remote sensing situations [Zaneveld, 1995].
Therefore a specific form of the RTE inversion is investi-
gated, namely a modified version of the shape factor
formulation of Zaneveld [1995]. Some of the motivation
for the work herein comes from the distinct need for highly
accurate methods to retrieve the absorption coefficients of
the chlorophyll accessory pigment phycoerythrin [Hoge et
al., 1999b]. To this end the absorption coefficients of
chlorophyll and chromophoric dissolved organic matter
(CDOM) must be accurately retrieved; otherwise, weaker
absorbing constituents (such as phycoerythrin) will be
obscured.
[4] In this paper (1) the shape factor form of the RTE is

shown to be readily configured into linear form for simul-
taneous retrieval of oceanic IOPs using standard matrix
methods; (2) the RTE inversion is derived for the principal
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‘‘big three’’ IOPs, namely the phytoplankton absorption
coefficient, the CDOM + detritus absorption coefficient,
and the total constituent backscattering coefficient; (3) shape
factor and related models required for the inversion are
developed for backscattering and radiance shape factors, the
diffuse attenuation coefficient for upwelling radiance, the
ratio of average cosines of the air and water downwelling
irradiances, and the fractional forward scattering coefficient;
and (4) propagation of errors into the IOP state vector
resulting from errors in the data-model matrix and hydro-
spheric vector as well as shape factor and related models are
assessed.
[5] Our ultimate objective is to determine if the shape

factor RTE matrix inversion methodology will result in
accurate algorithms for application to satellite ocean color
data. This paper presents the underlying shape factor RTE
theory and develops the needed models for the shape factors
and related quantities, while future work will describe
comprehensive studies of the shape factor RTE inversion
of synthetic and real data.

HOGE ET AL.: RTE INVERSION VIA SHAPE FACTOR

6. Discussion

[33] To facilitate a brief comparison of the shape factor
models, propagation of errors into the retrieved IOPs, and

discussion of future inversion research, all the models are
reassembled below.
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Although they were derived from a physical basis, it was
seen that the models could take various forms. At this early
stage of development the above models probably represent
the starting point of their eventual evolution.
[34] The highly important f̂ b model contains (1) two

IOPs: bb and bf (but in a ratio combination b/bb = [(bb +
bf)/bb] = [1 + bf /bb]), (2) the most model coefficients (four),
and (3) the Sun sensor included angle x (but not the solar
zenith angle qs as do all the other models). In contrast, the Bf

model contains (1) the solar zenith angle and one IOP (bf)
and (2) the sole wavelength dependence found within the
models. The k̂ model contains only one IOP, bb, and the
solar zenith angle, qs. The R̂m model contains no IOPs; only
the solar zenith angle qs. (Inversion of the shape factor RTE
also requires models for those IOPs that are to be retrieved.
For example, the phytoplankton absorption coefficient aph,
the CDOM/detritus absorption coefficient ad and total
constituent backscattering bbt as given in equation (17).

These IOP models [Hoge and Lyon, 1996] are considered
more mature than the shape factor models. Uncertainty

propagated into retrieved IOPs by the IOP models used

within a semianalytic radiance model inversion has been
studied [Hoge and Lyon, 1996].)
[35] Thus, to initiate an iterative inversion, starting values

are required for both bb and bf. Physics demands that bb �
bbw, where bbw is the backscattering coefficient for water.
One possible method for selecting the starting value for bb is
to retrieve it by first executing a semianalytic model
inversion [Hoge and Lyon, 1996; Hoge et al., 1999a,
1999b, 2001]. Then it can continually be updated after each
shape factor RTE inversion in equation (17) since bb = bbw +
bbt. Similarly, physics dictates and limits the range of bf for
the first iteration of the shape factor RTE inversion: bf � bfw
where bfw is the forward scattering coefficient for water.
Although bf = bfw can perhaps be used as the starting value
for the first iteration, future research efforts must develop
methods for better (1) selection of starting values and (2)
updating of the value during subsequent iterations. Like bb,
the bf can, in principle, be retrieved using equation (17).
This too, however, presents some concerns: (1) few if any
models exist for bf to allow its retrieval by equations (17)
and (2) a concurrent retrieval of bf potentially weakens the
retrieval of the desired aph, ad, and bbt. Detailed error
propagation analyses of the shape factor RTE inversion
are outside the scope of this present paper, but a brief
discussion of the relative influence of the shape factor
models on the desired IOP state vector, p = [aph(lg), ad(ld)
bbt(lb)]

T, is provided in the following section.

6.1. Uncertainties in the IOP State Vector p

6.1.1. Sensitivity of p to Perturbations in the
Data-Model Matrix D
[36] As already noted, the inversion of the shape factor

form of the RTE is exact from the standpoint of radiative
transfer theory, and uncertainties in the retrieved IOPs
within the IOP state vector p are due only to the accuracy
of the (1) shape factor models and their related quantities
and (2) IOP models. Perturbations within D arise, for
example, from the water-leaving radiances, scalar irradian-
ces, IOP models, and backscattering shape factor contained
within it. Similarly, uncertainties in h arise from the
radiances, irradiances, hydrospheric constants (or IOP con-
stants aw and bbw) for sea water, as well as fb, dLu(li)/dz,
bf (li), fL(li), and cos q. Relative to h, the data-model
matrix, D, plays the major role in the propagation of errors
into p since kp � p0k/kpk � k(D) (k�Dk/kDk + kdhk/khk),
where kDk is the determinate of D and k(D) = kDk kD�1k
[Ortega, 1990; Hoge and Lyon, 1996]. The latter expression
is the condition number of D, and �D and dh represent
uncertainty or perturbation of D and h, respectively. Here p0

is the perturbed solution of p. The first expression simply
states that to first order the relative error in p can be k(D)
times the relative error in D and h. Thus the propagation
into p of the relative errors of both D and h is governed by
the condition number of D. For any norm, 1 � k(D) � 1.
For the limiting cases: k(D) = 1, D is said to be perfectly
conditioned, while for k(D) = 1, D is singular. For
intermediate values of k(D) the interpretation of the condi-
tion number is very subjective and must be evaluated
separately. For large k(D) the D matrix is said to be ill
conditioned and large errors may be found in p. For small
k(D) the D matrix is said to be well-conditioned and smaller
errors may be found in p. Of the shape factor components
only fb occurs in D (via V) and therefore provides the
strongest influence on the IOP retrieval errors.


