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MOTIVATION:

Why look at slope reversals?

= reverse hydraulic gradient — outburst
floods

= Sticky spots or lakes
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QUESTION AND APPROACH

Question: Under what conditions do
slope reversals form?

Approach: look for steady-state slope

reversals using a simple
non-dimensional model
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SCHEMATIC GEOMETRY
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MODEL

B Momentum balance
B 1-d version of stream-shelf egn’s - no internal deformation
B discard lateral drag

B Mass balance
B from continuity
B |gnore accumulation
B evolves to steady-state

B Non-dimensional to isolate parameters
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MODEL CONT’'D: Momentum balance

G rounded
9 {Qhu@ — éh2} = T < r € (0,1)
Ox or 2 4=—Lh*  floating
stretching — press. gradient = basal drag
Upstream boundary condition »(0) = 1
Downstream boundary condition
ou A, o B A, 1 ; A, B
2] (A Laap) - (<)

B f =1~ afull ice-front condtion; stretching = static pressure
difference

B { — (0~ no stretching

B {f ~ an inverse 'ice shelf buttressing’ parameter
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MODEL CONT'D: Mass balance

@_O__(‘?(uh)
o oxr

z € (0,1)

upstream boundary condition A (0) = hg

mhp>1
® h, = 1~ just floating, no overpressure

m Hy > 1~ overpressure
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MODEL CONT'D

B ce & basal rheology

v = \du/dm\l_Tn

7=

B two key non-dimensional param’s

driving stress
long. deformation

basal drag
long. deformation
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A, and G
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SCALES AND PARAMETERS

Variable Scale Value or range of scale Assumed here
h rswD 1.12(1 — 5 x 10*) m

T L 3 x10% -3 x10*m

U U 2—6x107° ms—!

t L/U 5—150 x 10" s

B; B; 1—2x 10® Pas!/3

T T 5 x 103 — 2 x 10° Pa

A, piggfg/ > 260

G L s 5x 1072 — 6 x 102
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EXPERIMENTAL APPROACH

B \We're looking for steady-state slope reversals in parameter space.

B 'Free’ parameters are A,., G, hg and f.

B Numerical model:

B FEM spatial discretization of both the mom. and mass
balance eqn’s

B FDM temporal discretization of the mass balance eqn

B Relax the model to to equilibrium for each point in parameter
space.

B Does the steady-state thickness profile have a slope-reversal at
that point in parameter space?

PENNSTATE

B
L

WAIS - p.11/22



SPECIFIC EXPERIMENTS

12 < A, <30
0 0.1 <G L6
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x;O x=; x;O x:;
1 X X
I stream ishelf |7 , stream TR [
_ v R ocean ' .
Lake sill \\ LV sill

ocean
normal slope, fully grounded

x=0

normal slope, part. grounded
x=1 x=0 x=1
i stream iﬂ_ ocean ; stream :shelf

Ly sill \

ocean
LV sill \
reverse slope, fully grounded

reverse slope, part. grounded
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RESULTS: Ag =1
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RESULTS: hy = 1.01, f =
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RESULTS: hy = 1.01, f = 0.9
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RESULTS: hy = 1.1, f =
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RESULTS: hg = 1.1, f = 0.9
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RESULTS SUMMARY
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Initial Conclusions

B Slope reversals are found within the range of 'reasonable’
parameter values.

B Slope reversals tend to occupy the lower A,., higher GG portion of
A,., G space...

B Slope reversals are favored by a reduction in f or hy.
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Broader Conclusions

B Transition to a slope reversal is favored by
B thinning
B making the sill 'stickier’
B |ncreasing ice-shelf buttressing

B Grounding should cause slope reversals, and the slope reversal
should dissapear later as the ice thickens.

B Qutburst flooding is to be expected.
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Future Work

B Topography - bump magnitude and shape
B Transient grounding scenarios

B Include a sealed water-filled basin
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