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® Oral presentations are limited to contributions on the
following topics.

- "Fuzzy Math" - Why aren't our models good enough yet?

"Hogging the Limelight" - What are we learning about
PIG and the rest of the Amundsen Sea Embayment!?

"Hey, Over Here!" - What are we missing by focusing on
the Amundsen Sea and why should we care?

"Working on the Chain Gang" - What are the critical
linkages that drive the behavior of the ice sheet!?

"Lost at Sea" - What have we been missing all these years
by ignoring the ice shelves!?




|4 August email:

® The five focus questions that were posed generated a lot of
excellent submissions, however, there was so much cross
linking of information between these topics that |
abandoned them in structuring the agenda.

Instead, the agenda is organized by the topics: ice shelves
and ocean; grounding lines; basal conditions; and ice sheets.
Within each topic the talks start with observations and end
with models. My intention with this structure is to help
reveal if the measurements and models are supporting each
other. A plenary discussion is included at the end of each
topic to address this subject.




Boundary conditions
for a full-momentum solver:
|) The dilemma of sliding
2) how do we do embedded models!?
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The Full Momentum
Solver

® The holy grail of ice sheet modeling.
® |n principle,
- conservation of momentum,

- coupled with a flow law,

® can provide a differential equation solvable
for velocities at every point within the ice
sheet volume.




The shallow-ice
approximation

® neglects all but the basal drag

® and is useful for slow-moving inland ice.




The shallow-ice
approximation

Only stress allowed is the basal drag.

Stress assumed to be linear with depth.

»  Vertical velocity profile from integrated strain rate.

Quasi-2D, with Z integrated out.
One degree of freedom per node.

Good for interior ice sheet and where longitudinal stresses
can be neglected.

Probably not very good for ice streams.




The Morland-MacAyeal
equations

neglect all but the longitudinal stresses

and are useful for ice shelves

and perhaps, in limited circumstances, ice
streams.




The Morland-MacAyeal
equations

A modification of the Morland Equations for an ice shelf
pioneered by MacAyeal and Hulbe.

Quasi-2D model (plug flow in X and Y, with Z integrated out).
Three degrees of freedom (Ux, Uy, and h) vs one (h).

- Addition of friction term violates assumptions of the Morland
derivation.

Requires specification as to where ice stream occurs.




These approximations take advantage of the
different scales of the horizontal versus the
vertical dimensions of the ice sheet,

and involve an integration and removal of
the vertical coordinate.

Both of these approximations have severe
limitations, especially in the dynamically
critical ice streams that drain most of the
mass out of Antarctica.

The key interaction of shelf and inland ice,
though the ice stream, cannot be adequately
captured with either of these "end-member”
approximations.




® A full-momentum solver that
- neglects no stresses and

- makes no assumptions or vertical
Integrations

® should give us the best and most accurate
model for ice streams.




The computational requirements for such a
model are not reasonable for a whole-ice
sheet simulation, and hence we have pursued
the embedded-grid approach, whereby a

shallow-ice model is run for the whole ice
sheet, and the full-momentum solver is
applied only to a sub-region where ice
stream dynamics are known to be
Important.




® As such there are three different types of
boundary conditions that must be specified,

- the top, the bottom, and the sides.

® The top is easy, a free-boundary is easily
specified.

- Simply no constraits.

® [he sides and bottom are more difficult.




® On the sides we have a choice of boundary
condition type. Either:

- Dirichlet: specified boundary velocities
(the unknowns, or degrees of freedom in
the full-momentum solver)

- Neumann: specified pressures or surface
tractions (the source of momentum).




® From the shallow-ice model in which the full
momentum solver is embedded, we can
provide both of these conditions,

- although for Dirichlet, the vertical
variation in velocity is only of lower order.

(Numerical integration of linearly varying driving
stress through the temperature-dependent flow law)




For Neumann, pressures are not difficult to
specify (a simple function of depth).

However, conservation of angular
momentum

(net rotational torque must be zero),

does require specification of some surface
traction

(the "dynamical stresses"),

and this can be problematic.




























® Specification of the bottom boundary is
more difficult, due to the poorly understood

nature of sliding.

(hard rock, deformable sediments, polythermal ice, basal
water, etc.).

® A frozen bed is easy, a simple Dirichlet BC

with all velocities specified at zero.

® A completely uncoupled bed is also easy,
with a simple free BC in the two horizontal

dimensions.
(In ALL of these cases the vertical velocity is specified to
be zero, although it could be the basal melt/freeze rate)




® With Neumann boundary conditions, we can
specify the basal traction.

e |[f this is specified to be equal to the driving
stress

(rho*g*h*alpha),

® we obtain the same solution that we get
when we specify no sliding

(Dirichlet, all velocities zero).




® |n reality, the basal stress should be less than
the driving stress, with some portion taken
up by side shear and longitudinal stresses.

We have tried specifying a given fraction of
the driving stress, but this leads to unrealistic

oscillations in the ice sheet profile.

A uniform stress works well, but there is no
indication that this is a reasonable

assumption, nor does this deal well with the
transition from inland to streaming to shelf.




® Both of these also require "yet-another-
parameter,” and hence are undesirable.

® A third approach involves a " deformable”
basal layer, (a thin layer of elements, the
order of meters thick, which is much softer.

® With this approach, one can preserve the
easy-to-implement Dirichlet boundary
conditions of all basal velocities specified at
zero, and still obtain high sliding velocities,
and plug-like flow.




® The dilemma is of course the requirement of
a "'parameter” (how soft and how thick is
this layer?)

Tuning such a model (and remember, this is

how the parameters in most sliding laws are
obtained, by tuning) would involve
comparison of measured and modeled
velocity fields in well-documented areas
such as the Siple Coast, and soon the
Amundsen Sector.




THANKYOU



® Supplemental material




Einstein Notation

The convention is that any
repeated subscript implies a

summation over its appropriate
range.

A comma implies partial
differentiation with respect to
the appropriate coordinate.
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The Full Momentum Equation

Conservation of Momentum: 0344.7 -+ pa; = 0
Balance of Forces ( 1)

Flow Law, relating stress and 05 — 5?,3P + Qﬂéij
strain rates.

Effective viscosity, a function of
the strain invariant.




The Full Momentum Equation

The strain invariant.

Strain rates and velocity
gradients.

The differential equation from
combining the conservation law
and the flow law.
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The Full Momentum Equation

FEM converts differential
equation to matrix equation.

(Kmn + K;nn)Un = Fm
(7)

Kmn as integral of strain rate Kmn = [[[ Wi ju(Wip; + W) dV
term. (8)

Shape functions as linear FEM
interpolating functions.




The Full Momentum Equation

Elimination of pressure degree
of freedom by Penalty Method.

K'mn as integral of the pressure
term.

Load vector, RHS, as integral of
the body force term.

P=AU;;
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