NASA SnowEx Airborne Snow Campaign information & discussion webex

Slides partially revised based on webex feedback. Please keep in mind that the purpose of these webex slides is to provide information for discussion at the Seattle iSWGR workshop later this month, not to list final decisions. That will be the topic of the community discussions in Seattle!

Edward Kim, Charles Gatebe, Dorothy Hall, Matthew Sturm, Noah Molotch, Chris Crawford, DK Kang, Eugenia De Marco, Christy Hansen, HP Marshall, Bryan Blair, Jeff Deems, Leung Tsang, Jared Entin, Kristin Lewis
(with contributions by many others)

March 9, 2016
Webex Agenda

• Roll call
• Overall Background
• Goals of webex & Seattle meeting
• Instruments & Aircraft
• Sites
• Ground truth (if time)
• Wrap up/Summary

• Presentations & audio recording will be posted on snow.nasa.gov
Recent snow community consensus about the need for a multi-sensor approach...and

...the realization that we don’t have a good multi-sensor dataset to use for algorithm development or to perform trade studies to design a mission concept

NASA Terrestrial Hydrology Program has stepped up to provide us with an opportunity to address the lack of multi-sensor data via a multi-sensor airborne campaign -> SnowEx
What is SnowEx?

• SnowEx is a multi-year airborne snow campaign. Its goal is to collect multi-sensor observations plus ground truth to enable trade studies for snow satellite mission designs.

• SnowEx is all about challenging the sensing techniques and algorithms....until they break. Only then will we learn when & where each technique works or doesn’t work—and why.
NASA-SnowEx Context

• NASA is a space agency

• A NASA snow satellite mission needs to be global
 – a mission that addresses snow only in a limited domain does not meet this requirement
 – Conversely, a mission that cannot sense snow over a large domain is less desirable than one which can
 – It’s perfectly fine for a mission to exclude areas where a retrieval is not practical (example: SMAP)

• SnowEx is about measurement of global types of snow
SnowEx Driving Questions

• **Primary driving question**: What is the optimum combination of sensing techniques to measure global SWE? (where, when, how much)

• **Secondary driving question**: What is the optimum combination of sensing techniques to measure global snow melt/energy balance-related info? (where, when, how fast)

• SnowEx must keep in mind that the answers need to be applicable to a spaceborne measurement system, so we must repeatedly ask ourselves if the experiment design as well as the answers will translate to space.
When is SnowEx?

- Year 1 = 2016/17 Winter: campaign
- Year 2 = 2017/18 Winter: no campaign
- Year 3 = 2018/19 Winter: campaign
- Year 4 = 2019/20 Winter: campaign
- Year 5 = 2020/21 Winter: campaign

Please Note: ‘Year 1’ is the beginning. Things that are beyond Year 1 resources can be addressed in following years. We don’t need to do everything in Year 1.

“Campaign” includes
- fall no-snow background obs w/lidar & radar
- Spring dry snow obs w/full sensor suite
Where will SnowEx be?

• A site discussion is part of this webex—so only a few brief notes here:
• Site selection will be primarily based on the site characteristics needed to achieve SnowEx objectives.
• A detailed list of characteristics came from the 2015 Columbia, MD community workshop and have been refined.
• See snow.nasa.gov for a comparison of potential sites.
Instrument types & aircraft?

- From the 2015 Columbia SnowEx workshop, the core sensor types were
 - Lidar
 - Radar (SAR, volume scattering approach)
 - Passive microwave
 - Passive VIS/IR

- Also discussed in other community fora
 - Multispectral, hyperspectral, photography

- We can consider adding other sensors, but Year 1 is strongly resource limited

- An exhaustive aircraft evaluation is in progress
Why challenge with forests?

• Reviewers of 3 of the unsuccessful recent snow mission proposals identified the lack of retrievals in forests as an issue

• Forested areas cover a large part of the snow covered world

• So far, we’ve avoided forests because all ‘traditional’ techniques have issues there
 – But new techniques (lidar) appear to offer significant progress to retrieve snow in forests
 – Other new techniques might also change the game to permit limited forest retrievals
Don’t take “forest” literally!

• “forest” doesn’t mean 100% canopy fill, opaque forest; real forests have gaps
 – Clever new approaches are opening up retrievals in “forests”
 – For SnowEx, “forest” means the **continuum** from 0% trees to 100% filled, because that will allow us to determine when a sensing technique stops working

• A future snow mission doesn’t need to retrieve snow everywhere in all conditions
These are all examples of “forest”
Instrument Requirements

- Starting point = recent spaceborne snow concepts
- Modified for airborne situation
- Not totally final, but the longer it takes to finalize, the greater the risk

- Other considerations
 - Maturity
 - Availability
 - Accuracy
 - Cost
 - (not a complete list)

- Instrument & aircraft choices are closely linked
- Baseline instruments need to be known in order to select aircraft
- Aircraft need to be nailed down by end of Seattle meeting - at the latest
- Therefore, instruments need to be nailed down at the Seattle meeting to reduce risk
- The candidates are limited in most cases
Instrument Candidates-overview

- Radar (SAR)--SnowSAR
- Passive MW--AESMIR
- Passive VIS/IR--CAR
- Multi-spectral--included w/CAR
- Hyper-spectral--lidar candidates co-fly w/this
- Photography--lidar candidates co-fly w/this
- Lidar

- Instrument selection involves many considerations
Radar Requirements & Candidates

Volume scattering-based approach

• Prefer 2 frequencies and (VV, HH, cross) polarizations from among 10, 14, & 17 GHz (similar to CoReH2O & SCLP which were 10 & 17) but with 14 GHz added based on recent work. 17 GHz is most sensitive, then 14, then 10. Other freqs have been mentioned over the years, but these are the current main candidates.
• Prefer a SAR to get small footprints, but a scatterometer flying at low altitude might work.
• AirSWOT, GLISTIN-A, IcePod. wrong frequency.
• GPM airborne radars: has 14 GHz, not SAR.
• POLSCAT: 14 GHz scatterometer.
• SnowSAR: 10,17 GHz SAR. Previously flown but concerns about data delivery/accuracy. Concerns are being addressed; agreement w/MetaSensing would insist on healthy reserve to address this risk.
• WISM: has 10,14,17 GHz SAR, but might not be ready for SnowEx winter 1.

Phase-change based approach (e.g., Deeb et al)

• UAVSAR: L-band of interest to explore this approach
• PLIS, dbSAR: not as mature

• Flying more than one radar may move us closer to “ideal,” but with increased cost, complexity, and risk. If we can only afford one freq, the most sensitive is 17 GHz. Of the options, SnowSAR is the most mature with 17 GHz capability.
• Conclusion: use SnowSAR & keep options open if WISM becomes ready; discuss other scenarios. Explore adding L-band SAR for phase-change approach.
Passive Microwave Candidates

- Minimum 18 & 36 GHz, V & H pols
- Want imagery to match w/other sensors
- 10 & 89 GHz of secondary interest

- candidates
 - AESMIR
 - PSR
 - APMIR (no 89 GHz)

- All require heavy-lift aircraft
Passive VIS/IR Candidates

• Cloud Absorption Radiometer (CAR)
 – BRDF capability
 – Multi-spectral: 14 bands (0.34 to 2.29 μm)
 – Mature

• More info at http://car.gsfc.nasa.gov/

Bands at http://car.gsfc.nasa.gov/data/
Lidar Candidates

• ASO
• LVIS

• Many lidars were initially considered
 – SIMPL, MABEL, ATM, mini-ATM, IcePod, G-LiHT
• Both candidates can do what SnowEx needs
• Both are mature
• Both are reasonably available schedule-wise
• Both co-fly w/hyperspectral sensors & photography (cameras)
Multispectral/Hyperspectral Candidates

• If we fly either lidar candidate on the previous slide, they co-fly with hyperspectral sensors

• These are also mature
What’s Next

- Community planning webinar Mar 9 (today)
- Community planning workshop Mar 29-31, Seattle
- Keep checking snow.nasa.gov for updates on SnowEx